Mitigating ibrutinib-induced ventricular arrhythmia and cardiac dysfunction with metformin

使用二甲双胍缓解依鲁替尼引起的室性心律失常和心脏功能障碍

阅读:16
作者:Pengsha Li, Daiqi Liu, Pan Gao, Ming Yuan, Zhiqiang Zhao, Yue Zhang, Zandong Zhou, Qingling Zhang, Meng Yuan, Xing Liu, Gary Tse, Guangping Li, Qiankun Bao, Tong Liu

Background

Ibrutinib is a first-line drug that targets Bruton's tyrosine kinase for the treatment of B cell cancer. However, cardiotoxicity induced by ibrutinib is a major side effect that limits its clinical use. This study aimed to investigate the mechanism of ibrutinib-induced cardiotoxicity and evaluate the protective role of metformin.

Conclusion

The study concludes that metformin effectively mitigates ibrutinib-induced cardiotoxicity, including ventricular arrhythmia and cardiac dysfunction, by enhancing AMPK and PI3K-AKT pathway activity. These findings suggest that metformin holds potential as a therapeutic strategy to protect against the adverse cardiac effects associated with ibrutinib treatment, offering a promising approach for improving the cardiovascular safety of patients undergoing therapy for B cell cancers.

Methods

The study utilized male C57BL/6 J mice, which were administered ibrutinib at a dosage of 30 mg/kg/day via oral gavage for 4 weeks to induce cardiotoxicity. Metformin was administered orally at 200 mg/kg/day for 5 weeks, starting 1 week before ibrutinib treatment. Cardiac function was assessed using echocardiography and electrophysiological studies, including surface electrocardiography and epicardial electrical mapping. Blood pressure was measured using a tail-cuff system. Western blot analysis was conducted to evaluate the activity of the PI3K-AKT and AMPK pathways, along with apoptosis markers.

Results

C57BL/6 J mice were treated with ibrutinib for 4 weeks to assess its effect on cardiac function. We observed that ibrutinib induced ventricular arrhythmia and abnormal conduction while reducing the left ventricular ejection fraction. Furthermore, pretreatment with metformin reversed ibrutinib-induced cardiotoxicity. Mechanistically, ibrutinib decreased PI3K-AKT activity, resulting in apoptosis of cardiomyocytes. Administration of metformin upregulated AMPK and PI3K-AKT activity, which contributed to the improvement of cardiac function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。