Inflammatory biomarkers of sulfur mustard analog 2-chloroethyl ethyl sulfide-induced skin injury in SKH-1 hairless mice

硫芥子气类似物2-氯乙基乙基硫化物在SKH-1无毛小鼠中诱发的皮肤损伤的炎症生物标志物

阅读:10
作者:Neera Tewari-Singh, Sumeet Rana, Mallikarjuna Gu, Arttatrana Pal, David J Orlicky, Carl W White, Rajesh Agarwal

Abstract

Sulfur mustard (HD) is an alkylating and cytotoxic chemical warfare agent, which inflicts severe skin toxicity and an inflammatory response. Effective medical countermeasures against HD-caused skin toxicity are lacking due to limited knowledge of related mechanisms, which is mainly attributed to the requirement of more applicable and efficient animal skin toxicity models. Using a less toxic analog of HD, chloroethyl ethyl sulfide (CEES), we identified quantifiable inflammatory biomarkers of CEES-induced skin injury in dose- (0.05-2 mg) and time- (3-168 h) response experiments, and developed a CEES-induced skin toxicity SKH-1 hairless mouse model. Topical CEES treatment at high doses caused a significant dose-dependent increase in skin bi-fold thickness indicating edema. Histopathological evaluation of CEES-treated skin sections revealed increases in epidermal and dermal thickness, number of pyknotic basal keratinocytes, dermal capillaries, neutrophils, macrophages, mast cells, and desquamation of epidermis. CEES-induced dose-dependent increases in epidermal cell apoptosis and basal cell proliferation were demonstrated by the terminal deoxynucleotidyl transferase (tdt)-mediated dUTP-biotin nick end labeling and proliferative cell nuclear antigen stainings, respectively. Following an increase in the mast cells, myeloperoxidase activity in the inflamed skin peaked at 24 h after CEES exposure coinciding with neutrophil infiltration. F4/80 staining of skin integuments revealed an increase in the number of macrophages after 24 h of CEES exposure. In conclusion, these results establish CEES-induced quantifiable inflammatory biomarkers in a more applicable and efficient SKH-1 hairless mouse model, which could be valuable for agent efficacy studies to develop potential prophylactic and therapeutic interventions for HD-induced skin toxicity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。