Resistance to BRAF inhibition in BRAF-mutant colon cancer can be overcome with PI3K inhibition or demethylating agents

BRAF 突变结肠癌对 BRAF 抑制的耐药性可通过 PI3K 抑制剂或去甲基化剂来克服

阅读:10
作者:Muling Mao, Feng Tian, John M Mariadason, Chun C Tsao, Robert Lemos Jr, Farshid Dayyani, Y N Vashisht Gopal, Zhi-Qin Jiang, Ignacio I Wistuba, Xi M Tang, William G Bornman, Gideon Bollag, Gordon B Mills, Garth Powis, Jayesh Desai, Gary E Gallick, Michael A Davies, Scott Kopetz

Conclusions

We show that activation of the PI3K/AKT pathway is a mechanism of both innate and acquired resistance to BRAF inhibitors in BRAF(V600E) CRC and suggest combinatorial approaches to improve outcomes in this poor prognosis subset of patients.

Purpose

Vemurafenib, a selective inhibitor of BRAF(V600), has shown significant activity in BRAF(V600) melanoma but not in less than 10% of metastatic BRAF(V600) colorectal cancers (CRC), suggesting that studies of the unique hypermethylated phenotype and concurrent oncogenic activation of BRAF(mut) CRC may provide combinatorial strategies. Experimental design: We conducted comparative proteomic analysis of BRAF(V600E) melanoma and CRC cell lines, followed by correlation of phosphoinositide 3-kinase (PI3K) pathway activation and sensitivity to the vemurafenib analogue PLX4720. Pharmacologic inhibitors and siRNA were used in combination with PLX4720 to inhibit PI3K and methyltransferase in cell lines and murine models.

Results

Compared with melanoma, CRC lines show higher levels of PI3K/AKT pathway activation. CRC cell lines with mutations in PTEN or PIK3CA were less sensitive to growth inhibition by PLX4720 (P = 0.03), and knockdown of PTEN expression in sensitive CRC cells reduced growth inhibition by the drug. Combined treatment of PLX4720 with PI3K inhibitors caused synergistic growth inhibition in BRAF-mutant CRC cells with both primary and secondary resistance. In addition, methyltransferase inhibition was synergistic with PLX4720 and decreased AKT activation. In vivo, PLX4720 combined with either inhibitors of AKT or methyltransferase showed greater tumor growth inhibition than PLX4720 alone. Clones with acquired resistance to PLX4720 in vitro showed PI3K/AKT activation with EGF receptor (EGFR) or KRAS amplification. Conclusions: We show that activation of the PI3K/AKT pathway is a mechanism of both innate and acquired resistance to BRAF inhibitors in BRAF(V600E) CRC and suggest combinatorial approaches to improve outcomes in this poor prognosis subset of patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。