Effects of NADPH Oxidase Inhibitors and Mitochondria-Targeted Antioxidants on Amyloid β1-42-Induced Neuronal Deaths in Mouse Mixed Cortical Cultures

NADPH 氧化酶抑制剂和线粒体靶向抗氧化剂对小鼠混合皮质培养中淀粉样蛋白 β1-42 诱导的神经元死亡的影响

阅读:7
作者:Shinae Hwang, Jong-Keun Kim

Abstract

The Amyloid β peptide (Aβ) is a main component of senile plaques in Alzheimer's disease. Currently, NADPH oxidase (NOX) and mitochondria are considered as primary sources of ROS induced by Aβ. However, the contribution of NOX and mitochondria to Aβ-induced ROS generation has not been well defined. To delineate the relative involvement of NOX and mitochondria in Aβ-induced ROS generation and neuronal death in mouse cortical cultures, we examined the effect of NOX inhibitors, apocynin and AEBSF, and the mitochondria-targeted antioxidants (MTAs), mitotempol and mitoquinone, on Aβ-induced ROS generation and neuronal deaths. Cell death was assessed by measuring lactate dehydrogenase efflux in bathing media at 24 and 48 hrs after exposure to Aβ1-42. Aβ1-42 induced dose- and time-dependent neuronal deaths in cortical cultures. Treatment with 20 µM Aβ1-42 markedly and continuously increased not only the DHE fluorescence (intracellular ROS signal), but also the DHR123 fluorescence (mitochondrial ROS signal) up to 8 hrs. Treatment with apocynin or AEBSF selectively suppressed the increase in DHE fluorescence, while treatment with mitotempol selectively suppressed the increase in DHR123 fluorescence. Each treatment with apocynin, AEBSF, mitotempol or mitoquinone significantly attenuated the Aβ1-42-induced neuronal deaths. However, any combined treatment with apocynin/AEBSF and mitotempol/mitoquinone failed to show additive effects. These findings indicate that 20 µM Aβ1-42 induces oxidative neuronal death via inducing mitochondrial ROS as well as NOX activation in mixed cortical cultures, but combined suppression of intracellular and mitochondrial ROS generation fail to show any additive neuroprotective effects against Aβ neurotoxicity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。