T-cell Receptor Signaling Activates an ITK/NF-κB/GATA-3 axis in T-cell Lymphomas Facilitating Resistance to Chemotherapy

细胞受体信号激活 T 细胞淋巴瘤中的 ITK/NF-κB/GATA-3 轴,促进对化疗的耐药性

阅读:7
作者:Tianjiao Wang, Ye Lu, Avery Polk, Pinki Chowdhury, Carlos Murga-Zamalloa, Hiroshi Fujiwara, Koichiro Suemori, Niklas Beyersdorf, Alexandra C Hristov, Megan S Lim, Nathanael G Bailey, Ryan A Wilcox

Conclusions

These observations have significant therapeutic implications, as pharmacologic inhibition of ITK prevented the activation of this signaling axis and overcame chemotherapy resistance. Clin Cancer Res; 23(10); 2506-15. ©2016 AACR.

Purpose

T-cell lymphomas are a molecularly heterogeneous group of non-Hodgkin lymphomas (NHL) that account for a disproportionate number of NHL disease-related deaths due to their inherent and acquired resistance to standard multiagent chemotherapy regimens. Despite their molecular heterogeneity and frequent loss of various T cell-specific receptors, the T-cell antigen receptor is retained in the majority of these lymphomas. As T-cell receptor (TCR) engagement activates a number of signaling pathways and transcription factors that regulate T-cell growth and survival, we examined the TCR's role in mediating resistance to chemotherapy.Experimental Design: Genetic and pharmacologic strategies were utilized to determine the contribution of tyrosine kinases and transcription factors activated in conventional T cells following TCR engagement in acquired chemotherapy resistance in primary T-cell lymphoma cells and patient-derived cell lines.

Results

Here, we report that TCR signaling activates a signaling axis that includes ITK, NF-κB, and GATA-3 and promotes chemotherapy resistance.Conclusions: These observations have significant therapeutic implications, as pharmacologic inhibition of ITK prevented the activation of this signaling axis and overcame chemotherapy resistance. Clin Cancer Res; 23(10); 2506-15. ©2016 AACR.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。