Magnetic Molecularly Imprinted Polymers for the Rapid and Selective Extraction and Detection of Methotrexatein Serum by HPLC-UV Analysis

磁性分子印迹聚合物用于快速选择性提取和高效液相色谱-紫外分析检测甲氨蝶呤血清

阅读:6
作者:Tingting Zhou, Ziwen Deng, Qing Wang, Hui Li, Shun Li, Xuanming Xu, Yusun Zhou, Shukai Sun, Chao Xuan, Qingwu Tian, Limin Lun

Abstract

In this work, novel selective recognition materials, namely magnetic molecularly imprinted polymers (MMIPs), were prepared. The recognition materials were used as pretreatment materials for magnetic molecularly imprinted solid-phase extraction (MSPE) to achieve the efficient adsorption, selective recognition, and rapid magnetic separation of methotrexate (MTX) in the patients' plasma. This method was combined with high-performance liquid chromatography-ultraviolet detection (HPLC-UV) to achieve accurate and rapid detection of the plasma MTX concentration, providing a new method for the clinical detection and monitoring of the MTX concentration. The MMIPs for the selective adsorption of MTX were prepared by the sol-gel method. The materials were characterized by transmission electron microscopy, Fourier transform-infrared spectrometry, X-ray diffractometry, and X-ray photoelectron spectrometry. The MTX adsorption properties of the MMIPs were evaluated using static, dynamic, and selective adsorption experiments. On this basis, the extraction conditions were optimized systematically. The adsorption capacity of MMIPs for MTX was 39.56 mgg-1, the imprinting factor was 9.40, and the adsorption equilibrium time was 60 min. The optimal extraction conditions were as follows: the amount of MMIP was 100 mg, the loading time was 120 min, the leachate was 8:2 (v/v) water-methanol, the eluent was 4:1 (v/v) methanol-acetic acid, and the elution time was 60 min. MTX was linear in the range of 0.00005-0.25 mg mL-1, and the detection limit was 12.51 ng mL-1. The accuracy of the MSPE-HPLC-UV method for MTX detection was excellent, and the result was consistent with that of a drug concentration analyzer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。