Estradiol and 3β-diol protect female cortical astrocytes by regulating connexin 43 Gap Junctions

雌二醇和 3β-二醇通过调节连接蛋白 43 间隙连接保护女性皮质星形胶质细胞

阅读:6
作者:Seongcheol Kim, Nicholas Knesek Kubelka, Heather M LaPorte, Vignesh R Krishnamoorthy, Meharvan Singh

Abstract

While estrogens have been described to protect or preserve neuronal function in the face of insults such as oxidative stress, the prevailing mechanistic model would suggest that these steroids exert direct effects on the neurons. However, there is growing evidence that glial cells, such as astrocytes, are key cellular mediators of protection. Noting that connexin 43 (Cx43), a protein highly expressed in astrocytes, plays a key role in mediating inter-cellular communication, we hypothesized that Cx43 is a target of estradiol (E2), and the estrogenic metabolite of DHT, 3β-diol. Additionally, we sought to determine if either or both of these hormones attenuate oxidative stress-induced cytotoxicity by eliciting a reduction in Cx43 expression or inhibition of Cx43 channel permeability. Using primary cortical astrocytes, we found that E2 and 3β-diol were each protective against the mixed metabolic/oxidative insult, iodoacetic acid (IAA). Moreover, these effects were blocked by estrogen receptor antagonists. However, E2 and 3β-diol did not alter Cx43 mRNA levels in astrocytes but did inhibit IAA-induced Cx43 gap junction opening/permeability. Taken together, these data implicate astrocyte Cx43 gap junction as an understudied mediator of the cytoprotective effects of estrogens in the brain. Given the wide breadth of disease states associated with Cx43 function/dysfunction, further understanding the relationship between gonadal steroids and Cx43 channels may contribute to a better understanding of the biological basis for sex differences in various diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。