Radiation-induced lung injury and inflammation in mice: role of inducible nitric oxide synthase and surfactant protein D

小鼠放射性肺损伤和炎症:诱导型一氧化氮合酶和表面活性蛋白 D 的作用

阅读:13
作者:Rama Malaviya, Andrew J Gow, Mary Francis, Elena V Abramova, Jeffrey D Laskin, Debra L Laskin

Abstract

Reactive nitrogen species (RNS) generated after exposure to radiation have been implicated in lung injury. Surfactant protein D (SP-D) is a pulmonary collectin that suppresses inducible nitric oxide synthase (iNOS)-mediated RNS production. Herein, we analyzed the role of iNOS and SP-D in radiation-induced lung injury. Exposure of wild-type (WT) mice to γ-radiation (8 Gy) caused acute lung injury and inflammation, as measured by increases in bronchoalveolar lavage (BAL) protein and cell content at 24 h. Radiation also caused alterations in SP-D structure at 24 h and 4 weeks post exposure. These responses were blunted in iNOS(-/-) mice. Conversely, loss of iNOS had no effect on radiation-induced expression of phospho-H2A.X or tumor necrosis factor (TNF)-α. Additionally, at 24 h post radiation, cyclooxygenase expression and BAL lipocalin-2 levels were increased in iNOS(-/-) mice, and heme oxygenase (HO)-1(+) and Ym1(+) macrophages were evident. Loss of SP-D resulted in increased numbers of enlarged HO-1(+) macrophages in the lung following radiation, along with upregulation of TNF-α, CCL2, and CXCL2, whereas expression of phospho-H2A.X was diminished. To determine if RNS play a role in the altered sensitivity of SP-D(-/-) mice to radiation, iNOS(-/-)/SP-D(-/-) mice were used. Radiation-induced injury, oxidative stress, and tissue repair were generally similar in iNOS(-/-)/SP-D(-/-) and SP-D(-/-) mice. In contrast, TNF-α, CCL2, and CXCL2 expression was attenuated. These data indicate that although iNOS is involved in radiation-induced injury and altered SP-D structure, in the absence of SP-D, it functions to promote proinflammatory signaling. Thus, multiple inflammatory pathways contribute to the pathogenic response to radiation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。