Array-based gene expression, CGH and tissue data defines a 12q24 gain in neuroblastic tumors with prognostic implication

基于阵列的基因表达、CGH 和组织数据确定了神经母细胞肿瘤中 12q24 的增益,具有预后意义

阅读:5
作者:Maija Wolf, Miikka Korja, Ritva Karhu, Henrik Edgren, Sami Kilpinen, Kalle Ojala, Spyro Mousses, Anne Kallioniemi, Hannu Haapasalo

Background

Neuroblastoma has successfully served as a model system for the identification of neuroectoderm-derived oncogenes. However, in spite of various efforts, only a few clinically useful prognostic markers have been found. Here, we present a framework, which integrates DNA, RNA and tissue data to identify and prioritize genetic events that represent clinically relevant new therapeutic targets and prognostic biomarkers for neuroblastoma.

Conclusions

The presented systematic and rapid framework, which integrates aCGH, gene expression and tissue data to obtain novel targets and biomarkers for cancer, identified a low-level gain of the 12q24.31 as a potential new biomarker for neuroblastoma progression. Furthermore, results of in silico data mining suggest a new neuroblastoma target gene, DIABLO, within this region, whose functional and therapeutic role remains to be elucidated in follow-up studies.

Methods

A single-gene resolution aCGH profiling was integrated with microarray-based gene expression profiling data to distinguish genetic copy number alterations that were strongly associated with transcriptional changes in two neuroblastoma cell lines. FISH analysis using a hotspot tumor tissue microarray of 37 paraffin-embedded neuroblastoma samples and in silico data mining for gene expression information obtained from previously published studies including up to 445 healthy nervous system samples and 123 neuroblastoma samples were used to evaluate the clinical significance and transcriptional consequences of the detected alterations and to identify subsequently activated gene(s).

Results

In addition to the anticipated high-level amplification and subsequent overexpression of MYCN, MEIS1, CDK4 and MDM2 oncogenes, the aCGH analysis revealed numerous other genetic alterations, including microamplifications at 2p and 12q24.11. Most interestingly, we identified and investigated the clinical relevance of a previously poorly characterized amplicon at 12q24.31. FISH analysis showed low-level gain of 12q24.31 in 14 of 33 (42%) neuroblastomas. Patients with the low-level gain had an intermediate prognosis in comparison to patients with MYCN amplification (poor prognosis) and to those with no MYCN amplification or 12q24.31 gain (good prognosis) (P = 0.001). Using the in silico data mining approach, we identified elevated expression of five genes located at the 12q24.31 amplicon in neuroblastoma (DIABLO, ZCCHC8, RSRC2, KNTC1 and MPHOSPH9). Among these, DIABLO showed the strongest activation suggesting a putative role in neuroblastoma progression. Conclusions: The presented systematic and rapid framework, which integrates aCGH, gene expression and tissue data to obtain novel targets and biomarkers for cancer, identified a low-level gain of the 12q24.31 as a potential new biomarker for neuroblastoma progression. Furthermore, results of in silico data mining suggest a new neuroblastoma target gene, DIABLO, within this region, whose functional and therapeutic role remains to be elucidated in follow-up studies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。