Exosomal miR‑3681‑3p from M2‑polarized macrophages confers cisplatin resistance to gastric cancer cells by targeting MLH1

来自 M2 极化巨噬细胞的外泌体 miR-3681-3p 通过靶向 MLH1 赋予胃癌细胞顺铂耐药性

阅读:8
作者:Wujun Wei #, Jiaxing Li #, Jingjing Huang, Qi Jiang, Cheng Lin, Rentong Hu, Jiazhu Wei, Qiao Li, Guidan Xu, Zhengyi Chang

Abstract

Cisplatin (DDP) is a key chemotherapeutic agent in the treatment of gastric cancer; however, its efficacy is often limited by chemoresistance, a notable challenge in clinical oncology. The present study aimed to investigate the influence of exosomes derived from M2‑polarized macrophages, which promote this resistance, on the response of gastric cancer cells to DDP, examining both the effects and the underlying mechanisms. M2 macrophages, differentiated from mouse bone marrow cells with interleukin (IL)‑13 and IL‑4, were identified using immunofluorescence staining for CD206 and CD163. Exosomes derived from these macrophages were characterized using transmission electron microscopy and protein markers, including calnexin, tumor susceptibility gene 101 and CD9. The role of exosomal microRNA (miR)‑3681‑3p in DDP resistance was assessed using Cell Counting Kit‑8 and apoptosis assays, while a luciferase reporter assay was used to elucidate the interaction between miR‑3681‑3p and MutL protein homolog 1 (MLH1). Co‑culturing gastric cancer cells with M2 macrophages enhanced DDP resistance, an effect amplified by exosomes from M2 macrophages enriched with miR‑3681‑3p. This microRNA directly targeted and reduced MLH1 protein expression. Overexpression of miR‑3681‑3p through mimic transfection, along with MLH1 silencing by small interfering RNA transfection, significantly increased DDP resistance, as evidenced by elevated IC50 values in AGS cells. By contrast, the overexpression of MLH1 effectively reversed the drug resistance of AGS cells to DDP caused by miR‑3681‑3p mimic transfection, as evidenced by a decrease in the IC50 value. In conclusion, exosomal miR‑3681‑3p from M2 macrophages may have a key role in conferring DDP resistance to gastric cancer by suppressing MLH1, offering a new therapeutic target for overcoming chemoresistance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。