Estrogen modulation of pain perception with a novel 17β-estradiol pretreatment regime in ovariectomized rats

雌激素通过新型 17β-雌二醇预处理方案调节卵巢切除大鼠的痛觉

阅读:13
作者:Wenxin Zhang, Hui Wu, Qi Xu, Sheng Chen, Lihong Sun, Cuicui Jiao, Luyang Wang, Feng Fu, Ying Feng, Xiaowei Qian, Xinzhong Chen

Abstract

Estrogen plays substantial roles in pain modulation; however, studies concerning sex hormones and nociception often yield confusing results. The discrepancy could be a result of lack of consensus to regard estrogen as a variable when working with animal models; thus, the influence of hormones' fluctuations on nociception has continually been neglected. In the present study, we designed a novel hormone substitution model to aid us to evaluate the effects of estrogen's long-term alterations on ovariectomy (OVX)-induced mechanical hyperalgesia and the expression of estrogen receptors(ERs). OVX rats were implanted with slow-release estrogen pellets at differently arranged time points and doses, such that a gradual elevation or decrease of serum estrogen levels following a relatively stable period of estrogen replacement was achieved in rats. Our results demonstrated that gradual estrogen depletion rather than elevation following the stable period of estrogen substitution in OVX rats alleviated OVX-induced mechanical hyperalgesia in a dose-independent manner, and the opposite estrogen increase or decrease paradigms differently regulate the expression of spinal ERs. Specifically, in rats rendered to continuously increased serum estrogen, the early phase estrogen-induced anti-nociception effect in OVX rats was eliminated, which was accompanied by an over-activation of ERα and a strong depression of ERβ, while in the OVX rats subject to gradual decrease of estrogen replacement, both ERα and ERβ increased modestly compared with the OVX group. Thus, the present study demonstrated that estrogen increase or decrease modulate nociception differently through change of spinal ERs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。