Phototuning of Hyaluronic-Acid-Based Hydrogel Properties to Control Network Formation in Human Vascular Endothelial Cells

光调节透明质酸基水凝胶特性以控制人血管内皮细胞网络形成

阅读:4
作者:Kelum Chamara Manoj Lakmal Elvitigala, Lakshmi Mohan, Wildan Mubarok, Shinji Sakai

Abstract

In vitro network formation by endothelial cells serves as a fundamental model for studies aimed at understanding angiogenesis. The morphogenesis of these cells to form a network is intricately regulated by the mechanical and biochemical properties of the extracellular matrix. Here the effects of modulating these properties in hydrogels derived from phenolated hyaluronic acid (HA-Ph) and phenolated gelatin (Gelatin-Ph) are presented. Visible-light irradiation in the presence of tris(2,2'-bipyridyl)ruthenium(II) chloride hexahydrate and sodium persulfate induces the crosslinking of these polymers, thereby forming a hydrogel and degrading HA-Ph. Human vascular endothelial cells form networks on the hydrogel prepared by visible-light irradiation for 45 min (42 W cm-2 at 450 nm) but not on the hydrogels prepared by irradiation for 15, 30, or 60 min. The irradiation time-dependent degradation of HA-Ph and the changes in the mechanical stiffness of the hydrogels, coupled with the expressions of RhoA and β-actin genes and CD44 receptors in the cells, reveal that the network formation is synergistically influenced by the hydrogel stiffness and HA-Ph degradation. These findings highlight the potential of tailoring HA-based hydrogel properties to modulate human vascular endothelial cell responses, which is critical for advancing their application in vascular tissue engineering.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。