Structural and mutational analysis of glycoside hydrolase family 1 Br2 β-glucosidase derived from bovine rumen metagenome

源自牛瘤胃宏基因组的糖苷水解酶家族 1 Br2 β-葡萄糖苷酶的结构和突变分析

阅读:10
作者:Wilaiwan Kaenying, Takayoshi Tagami, Eukote Suwan, Chariwat Pitsanuwong, Sinchai Chomngam, Masayuki Okuyama, Palangpon Kongsaeree, Atsuo Kimura, Prachumporn T Kongsaeree

Abstract

Ruminant animals rely on the activities of β-glucosidases from residential microbes to convert feed fibers into glucose for further metabolic uses. In this report, we determined the structures of Br2, which is a glycoside hydrolase family 1 β-glucosidase from the bovine rumen metagenome. Br2 folds into a classical (β/α)8-TIM barrel domain but displays unique structural features at loop β5→α5 and α-helix 5, resulting in different positive subsites from those of other GH1 enzymes. Br2 exhibited the highest specificity toward laminaritriose, suggesting its involvement in β-glucan hydrolysis in digested feed. We then substituted the residues at subsites +1 and + 2 of Br2 with those of Halothermothrix orenii β-glucosidase. The C170E and C221T mutations provided favorable interactions with glucooligosaccharide substrates at subsite +2, while the A219N mutation probably improved the substrate preference for cellobiose and gentiobiose relative to laminaribiose at subsite +1. The N407Y mutation increased the affinity toward cellooligosaccharides. These results give further insights into the molecular determinants responsible for substrate specificity in GH1 β-glucosidases and may provide a basis for future enzyme engineering applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。