Improved Efficiency of All-Inorganic Quantum-Dot Light-Emitting Diodes via Interface Engineering

通过界面工程提高全无机量子点发光二极管的效率

阅读:8
作者:Qiulei Xu, Xinyu Li, Qingli Lin, Huaibin Shen, Hongzhe Wang, Zuliang Du

Abstract

As the charge transport layer of quantum dot (QD) light-emitting diodes (QLEDs), metal oxides are expected to be more stable compared with organic materials. However, the efficiency of metal oxide-based all-inorganic QLEDs is still far behind that of organic-inorganic hybrid ones. The main reason is the strong interaction between metal oxide and QDs leading to the emission quenching of QDs. Here, we demonstrated nickel oxide (NiOx)-based all-inorganic QLEDs with a maximum current efficiency of 20.4 cd A-1 and external quantum efficiency (EQE) of 5.5%, which is among the most efficient all-inorganic QLEDs. The high efficiency is mainly attributed to the aluminum oxide (Al2O3) deposited at the NiOx/QDs interface to suppress the strong quenching effect of NiOx on the QD emission, together with the molybdenum oxide (MoOx) that reduced the leakage current and facilitated hole injection, more than 300% enhancement was achieved compared with the pristine NiOx-based QLEDs. Our study confirmed the effect of decorating the NiOx/QDs interface on the performance enhancement of the all-inorganic QLEDs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。