Evidence for synergy between sarcomeres and fibroblasts in an in vitro model of myocardial reverse remodeling

心肌逆向重塑体外模型中肌节与成纤维细胞协同作用的证据

阅读:6
作者:Shi Shen, Lorenzo R Sewanan, Stuart G Campbell

Abstract

We have created a novel in-vitro platform to study reverse remodeling of engineered heart tissue (EHT) after mechanical unloading. EHTs were created by seeding decellularized porcine myocardial sections with a mixture of primary neonatal rat ventricular myocytes and cardiac fibroblasts. Each end of the ribbon-like constructs was fixed to a plastic clip, allowing the tissues to be statically stretched or slackened. Inelastic deformation was introduced by stretching tissues by 20% of their original length. EHTs were subsequently unloaded by returning tissues to their original, shorter length. Mechanical characterization of EHTs immediately after unloading and at subsequent time points confirmed the presence of a reverse-remodeling process, through which stress-free tissue length was increased after chronic stretch but gradually decreased back to its original value within 9 days. When a cardiac myosin inhibitor was applied to tissues after unloading, EHTs failed to completely recover their passive and active mechanical properties, suggesting a role for actomyosin contraction in reverse remodeling. Selectively inhibiting cardiomyocyte contraction or fibroblast activity after mechanical unloading showed that contractile activity of both cell types was required to achieve full remodeling. Similar tests with EHTs formed from human induced pluripotent stem cell-derived cardiomyocytes also showed reverse remodeling that was enhanced when treated with omecamtiv mecarbil, a myosin activator. These experiments suggest essential roles for active sarcomeric contraction and fibroblast activity in reverse remodeling of myocardium after mechanical unloading. Our findings provide a mechanistic rationale for designing potential therapies to encourage reverse remodeling in patient hearts.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。