IL-1-dependent electrophysiological changes and cardiac neural remodeling in a mouse model of Kawasaki disease vasculitis

川崎病血管炎小鼠模型中 IL-1 依赖性电生理变化和心脏神经重塑

阅读:9
作者:M Abe, D D Rastelli, A C Gomez, E Cingolani, Y Lee, P R Soni, M C Fishbein, T J A Lehman, K Shimada, T R Crother, S Chen, M Noval Rivas, M Arditi

Abstract

Kawasaki disease (KD) is the leading cause of acquired heart disease in children. In addition to coronary artery abnormalities, aneurysms and myocarditis, acute KD is also associated with echocardiogram (ECG) abnormalities in 40-80% of patients. Here, we show that these ECG changes are recapitulated in the Lactobacillus casei cell wall extract (LCWE)-induced KD vasculitis mouse model. LCWE-injected mice developed elevated heart rate and decreased R wave amplitude, with significant differences in prolonged ventricular repolarization. LCWE-injected mice developed cardiac ganglion inflammation, that may affect the impulse-conducting system in the myocardium. Furthermore, serum nerve growth factor (NGF) was significantly elevated in LCWE-injected mice, similar to children with KD vasculitis, associated with increased neural remodeling of the myocardium. ECG abnormalities were prevented by blocking interleukin (IL)-1 signaling with anakinra, and the increase in serum NGF and cardiac neural remodeling were similarly blocked in Il1r1-/- mice and in wild-type mice treated with anakinra. Thus, similar to clinical KD, the LCWE-induced KD vasculitis mouse model also exhibits electrophysiological abnormalities and cardiac neuronal remodeling, and these changes can be prevented by blocking IL-1 signaling. These data support the acceleration of anti-IL-1 therapy trials to benefit KD patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。