Triazine and Fused Thiophene-Based Donor-Acceptor Type Semiconducting Conjugated Polymer for Enhanced Visible-Light-Induced H2 Production

基于三嗪和稠合噻吩的供体-受体型半导体共轭聚合物用于增强可见光诱导 H2 生成

阅读:6
作者:Jian Liu, Shengling Zhang, Xinshu Long, Xiaomin Jin, Yangying Zhu, Shengxia Duan, Jinsheng Zhao

Abstract

Conjugated polymers have attracted significant attention in the field of photocatalysis due to their exceptional properties, including versatile optimization, cost-effectiveness, and structure stability. Herein, two conjugated porous polymers, PhIN-CPP and ThIN-CPP, based on triazines, were meticulously designed and successfully synthesized using benzene and thiophene as building blocks. Based on UV diffuse reflection spectra, the photonic band gaps of PhIN-CPP and ThIN-CPP were calculated as 2.05 eV and 1.79 eV. The PhIN-CPP exhibited a high hydrogen evolution rate (HER) of 5359.92 μmol·g-1·h-1, which is 10 times higher than that of Thin-CPP (538.49 μmol·g-1·h-1). The remarkable disparity in the photocatalytic performance can be primarily ascribed to alterations in the band structure of the polymers, which includes its more stable benzene units, fluffier structure, larger specific surface area, most pronounced absorption occurring in the visible region and highly extended conjugation with a high density of electrons. The ΔEST values for PhIN-CPP and ThIN-CPP were calculated as 0.79 eV and 0.80 eV, respectively, based on DFT and TD-DFT calculations, which revealed that the incorporation of triazine units in the as-prepared CMPs could enhance the charge transfer via S1 ↔ T1 and was beneficial to the photocatalytic decomposition of H2O. This study presents a novel concept for developing a hybrid system for preparation of H2 by photocatalysis with effectiveness, sustainability, and economy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。