ABRE-BINDING FACTOR3-WRKY DNA-BINDING PROTEIN44 module promotes salinity-induced malate accumulation in pear

ABRE-BINDING FACTOR3-WRKY DNA 结合蛋白 44 模块促进梨中盐分诱导的苹果酸积累

阅读:6
作者:Ahmed Alabd, Haiyan Cheng, Mudassar Ahmad, Xinyue Wu, Lin Peng, Lu Wang, Shulin Yang, Songling Bai, Junbei Ni, Yuanwen Teng

Abstract

Malate impacts fruit acidity and plays a vital role in stress tolerance. Malate accumulation is induced by salinity in various plants as a metabolite in coping with this stress. However, the exact molecular mechanism responsible for salinity-induced malate accumulation remains unclear. Here, we determined that salinity treatment induces malate accumulation in pear (Pyrus spp.) fruit, calli, and plantlets compared to the control. Genetic and biochemical analyses established the key roles of PpWRKY44 and ABRE-BINDING FACTOR3 (PpABF3) transcription factors in promoting malate accumulation in response to salinity. We found that PpWRKY44 is involved in salinity-induced malate accumulation by directly binding to a W-box on the promoter of the malate-associated gene aluminum-activated malate transporter 9 (PpALMT9) to activate its expression. A series of in-vivo and in-vitro assays revealed that the G-box cis-element in the promoter of PpWRKY44 was targeted by PpABF3, which further enhanced salinity-induced malate accumulation. Taken together, these findings suggest that PpWRKY44 and PpABF3 play positive roles in salinity-induced malate accumulation in pears. This research provides insights into the molecular mechanism by which salinity affects malate accumulation and fruit quality.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。