p57Kip2 is an unrecognized DNA damage response effector molecule that functions in tumor suppression and chemoresistance

p57Kip2 是一种未被认识的 DNA 损伤反应效应分子,在肿瘤抑制和化学抗性中发挥作用

阅读:7
作者:H Jia, Q Cong, J F L Chua, H Liu, X Xia, X Zhang, J Lin, S L Habib, J Ao, Q Zuo, C Fu, B Li

Abstract

The DNA damage response (DDR) helps to maintain genome integrity, suppress tumorigenesis and mediate the radiotherapeutic and chemotherapeutic effects on cancer. Here we report that p57Kip2, a cyclin-dependent kinase (CDK) inhibitor implicated in the development of tumor-prone Beckwith-Wiedemann syndrome, is an effector molecule of the DNA-damage response. Genotoxic stress induces p57Kip2 expression via the bone morphogenetic protein-Smad1 and Atm-p38MAPK-Atf2 pathways in p53-proficient or -deficient cells and requires the Smad1-Atf2 complex that facilitates their recruitment to the p57Kip2 promoter. Elevated p57Kip2 induces G1/S phase cell cycle arrest but inhibits cell death in response to DNA damage and acts in parallel with p53 to suppress cell transformation and tumor formation. p57Kip2 is also upregulated in stage I and II clinical rectal tumor samples, likely due to genome instability of precancerous and/or early cancer cells. Targeting p57Kip2 in primary rectal cancer cells and tumor models resulted in increased sensitivity to doxorubicin, suggesting that p57Kip2 has a role in chemoresistance, which is consistent with its pro-survival function. These findings place p57Kip2 in DDR and uncover molecular mechanisms by which p57Kip2 suppresses tumorigenesis and causes chemoresistance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。