Plasma-Induced Catalyst Support Defects for the Photothermal Methanation of Carbon Dioxide

等离子体诱导的二氧化碳光热甲烷化催化剂载体缺陷

阅读:6
作者:Salina Jantarang, Simone Ligori, Jonathan Horlyck, Emma C Lovell, Tze Hao Tan, Bingqiao Xie, Rose Amal, Jason Scott

Abstract

The presence of defects in a catalyst support is known to benefit catalytic activity. In this work, a He-plasma treatment-based strategy for introducing and stabilising defects on a Ni/TiO2 catalyst for photothermal CO2 hydrogenation was established. The impact of pretreatment step sequence-which comprised He-plasma treatment and reduction/passivation-on defect generation and stabilisation within the support was evaluated. Characterisation of the Ni/TiO2 catalysts indicated that defects created in the TiO2 support during the initial plasma treatment stage were then stabilised by the reduction/passivation process, (P-R)Ni/TiO2. Conversely, performing reduction/passivation first, (R-P)Ni/TiO2, invoked a resistance to subsequent defect formation upon plasma treatment and consequently, poorer photothermal catalytic activity. The plasma treatment altered the metal-support interaction and ease of catalyst reduction. Under photothermal conditions, (P-R)Ni/TiO2 reached the highest methane production in 75 min, while (R-P)Ni/TiO2 required 165 min. Decoupling the impacts of light and heat indicated thermal dominance of the reaction with CO2 conversion observed from 200 °C onwards. Methane was the primary product with carbon monoxide detected at 350 °C (~2%) and 400 °C (~5%). Overall, the findings demonstrate the importance of pretreatment step sequence when utilising plasma treatment to generate active defect sites in a catalyst support.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。