Antisense Oligonucleotide-Mediated Removal of the Polyglutamine Repeat in Spinocerebellar Ataxia Type 3 Mice

反义寡核苷酸介导的脊髓小脑共济失调 3 型小鼠聚谷氨酰胺重复序列的去除

阅读:5
作者:Lodewijk J A Toonen, Frank Rigo, Haico van Attikum, Willeke M C van Roon-Mom

Abstract

Spinocerebellar ataxia type 3 (SCA3) is a currently incurable neurodegenerative disorder caused by a CAG triplet expansion in exon 10 of the ATXN3 gene. The resultant expanded polyglutamine stretch in the mutant ataxin-3 protein causes a gain of toxic function, which eventually leads to neurodegeneration. One important function of ataxin-3 is its involvement in the proteasomal protein degradation pathway, and long-term downregulation of the protein may therefore not be desirable. In the current study, we made use of antisense oligonucleotides to mask predicted exonic splicing signals, resulting in exon 10 skipping from ATXN3 pre-mRNA. This led to formation of a truncated ataxin-3 protein lacking the toxic polyglutamine expansion, but retaining its ubiquitin binding and cleavage function. Repeated intracerebroventricular injections of the antisense oligonucleotides in a SCA3 mouse model led to exon skipping and formation of the modified ataxin-3 protein throughout the mouse brain. Exon skipping was long lasting, with the modified protein being detectable for at least 2.5 months after antisense oligonucleotide injection. A reduction in insoluble ataxin-3 and nuclear accumulation was observed following antisense oligonucleotide treatment, indicating a beneficial effect on pathogenicity. Together, these data suggest that exon 10 skipping is a promising therapeutic approach for SCA3.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。