Functional state of the plasma membrane Ca2+ pump in Plasmodium falciparum-infected human red blood cells

恶性疟原虫感染人类红细胞的质膜 Ca2+ 泵的功能状态

阅读:4
作者:T Tiffert, H M Staines, J C Ellory, V L Lew

Abstract

The active Ca2+ transport properties of malaria-infected, intact red blood cells are unknown. We report here the first direct measurements of Ca2+ pump activity in human red cells infected with Plasmodium falciparum, at the mature, late trophozoite stage. Ca2+ pump activity was measured by the Co2+-exposure method adapted for use in low-K+ media, optimal for parasitised cells. This required a preliminary study in normal, uninfected red cells of the effects of cell volume, membrane potential and external Na+/K+ concentrations on Ca2+ pump performance. Pump-mediated Ca2+ extrusion in normal red cells was only slightly lower in low-K+ media relative to high-K+ media despite the large differences in membrane potential predicted by the Lew-Bookchin red cell model. The effect was prevented by clotrimazole, an inhibitor of the Ca2+-sensitive K+ (KCa) channel, suggesting that it was due to minor cell dehydration. The Ca2+-saturated Ca2+ extrusion rate through the Ca2+ pump (Vmax) of parasitised red cells was marginally inhibited (2-27 %) relative to that of both uninfected red cells from the malaria-infected culture (cohorts), and uninfected red cells from the same donor kept under identical conditions (co-culture). Thus, Ca2+ pump function is largely conserved in parasitised cells up to the mature, late trophozoite stage. A high proportion of the ionophore-induced Ca2+ load in parasitised red cells is taken up by cytoplasmic Ca2+ buffers within the parasite. Following pump-mediated Ca2+ removal from the host, there remained a large residual Ca2+ pool within the parasite which slowly leaked to the host cell, from which it was pumped out.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。