Transplantation of Neural Stem Cells Loaded in an IGF-1 Bioactive Supramolecular Nanofiber Hydrogel for the Effective Treatment of Spinal Cord Injury

载有IGF-1生物活性超分子纳米纤维水凝胶的神经干细胞移植对脊髓损伤的有效治疗

阅读:7
作者:Peiwen Song, Tianyu Han, Zuomeng Wu, Huang Fang, Yunlei Liu, Wang Ying, Xianwen Wang, Cailiang Shen

Abstract

Spinal cord injury (SCI) leads to massive cell death, disruption, and demyelination of axons, resulting in permanent motor and sensory dysfunctions. Stem cell transplantation is a promising therapy for SCI. However, owing to the poor microenvironment that develops following SCI, the bioactivities of these grafted stem cells are limited. Cell implantation combined with biomaterial therapies is widely studied for the development of tissue engineering technology. Herein, an insulin-like growth factor-1 (IGF-1)-bioactive supramolecular nanofiber hydrogel (IGF-1 gel) is synthesized that can activate IGF-1 downstream signaling, prevent the apoptosis of neural stem cells (NSCs), improve their proliferation, and induce their differentiation into neurons and oligodendrocytes. Moreover, implantation of NSCs carried out with IGF-1 gels promotes neurite outgrowth and myelin sheath regeneration at lesion sites following SCI. In addition, IGF-1 gels can enrich extracellular vesicles (EVs) derived from NSCs or from nerve cells differentiated from these NSCs via miRNAs related to axonal regeneration and remyelination, even in an inflammatory environment. These EVs are taken up by autologous endogenous NSCs and regulate their differentiation. This study provides adequate evidence that combined treatment with NSCs and IGF-1 gels is a potential therapeutic strategy for treating SCI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。