Highly N-doped microporous carbon nanospheres with high energy storage and conversion efficiency

具有高能量存储和转换效率的高度N掺杂微孔碳纳米球

阅读:6
作者:Cheolho Kim, Kiwon Kim, Jun Hyuk Moon

Abstract

Porous carbon spheres (CSs) have distinct advantages in energy storage and conversion applications. We report the preparation of highly monodisperse N-doped microporous CSs through the carbonization of polystyrene-based polymer spheres and subsequent activation. The N-doped microporous CSs have a remarkably high N-doping content, over 10%, and high BET surface area of 884.9 m2 g-1. We characterize the synergistic effects of the micropores and N doping on the energy storage performance of a supercapacitor electrode consisting of the CSs and on the performance in an electrocatalytic reaction of a CS counter electrode in a photovoltaic cell. The N-doped microporous CSs exhibit a maximum capacitance of 373 F g-1 at a current density of 0.2 Ag-1, a high capacitance retention up to 62% with a 10-fold increase in current density, and excellent stability over 10,000 charge/discharge cycles. A counter electrode consisting of N-doped microporous CSs was found to exhibit superior electrocatalytic behavior to an electrode consisting of conventional Pt nanoparticles. These CSs derived from polymer spheres synthesized by addition polymerization will be new platform materials with high electrochemical performance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。