HECATE2 acts with GLABROUS3 and Tu to boost cytokinin biosynthesis and regulate cucumber fruit wart formation

HECATE2 与 GLABROUS3 和 Tu 协同作用,促进细胞分裂素的生物合成并调节黄瓜果疣的形成

阅读:8
作者:Zhongyi Wang, Liming Wang, Lijie Han, Zhihua Cheng, Xiaofeng Liu, Shaoyun Wang, Liu Liu, Jiacai Chen, Weiyuan Song, Jianyu Zhao, Zhaoyang Zhou, Xiaolan Zhang

Abstract

Warty fruit in cucumber (Cucumis sativus L.) is an important quality trait that greatly affects fruit appearance and market value. The cucumber wart consists of fruit trichomes (spines) and underlying tubercules, in which the existence of spines is prerequisite for tubercule formation. Although several regulators have been reported to mediate spine or tubercule formation, the direct link between spine and tubercule development remains unknown. Here, we found that the basic Helix-Loop-Helix (bHLH) gene HECATE2 (CsHEC2) was highly expressed in cucumber fruit peels including spines and tubercules. Knockout of CsHEC2 by the CRISPR/Cas9 system resulted in reduced wart density and decreased cytokinin (CTK) accumulation in the fruit peel, whereas overexpression of CsHEC2 led to elevated wart density and CTK level. CsHEC2 is directly bound to the promoter of the CTK hydroxylase-like1 gene (CsCHL1) that catalyzes CTK biosynthesis, and activated CsCHL1 expression. Moreover, CsHEC2 physically interacted with GLABROUS3 (CsGL3, a key spine regulator) and Tuberculate fruit (CsTu, a core tubercule formation factor), and such interactions further enhanced CsHEC2-mediated CsCHL1 expression. These data suggested that CsHEC2 promotes wart formation by acting as an important cofactor for CsGL3 and CsTu to directly stimulate CTK biosynthesis in cucumber. Thus, CsHEC2 can serve as a valuable target for molecular breeding of cucumber varieties with different wart density requirements.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。