Wnt5a promotes epithelial-to-mesenchymal transition and metastasis in non-small-cell lung cancer

Wnt5a 促进非小细胞肺癌上皮间质转化和转移

阅读:6
作者:Biao Wang, Zhen Tang, Huiyuan Gong, Li Zhu, Xuegang Liu

Abstract

A recent study indicated that high Wnt5a expression is associated with poor prognosis in non-small-cell lung cancer (NSCLC) patients; however, the underlying mechanism was not clear yet. Immunohistochemistry and Western blotting were performed to examine the protein expression level in NSCLC tissues and cell lines. The role of Wnt5a in clone formation, invasiveness, migration, and epithelial-to-mesenchymal transition (EMT) of NSCLC cells was studied. Luciferase reporter assay was used to evaluate the Tcf/Lef transcriptional activity. For assessing the effects of Wnt5a on tumor growth and metastasis in vivo, A549 cells transfected with sh-Wnt5a were subcutaneously or orthotopically injected into nude mice. In NSCLC tissues, higher expression levels of Wnt5a and ROR2 were found, β-Catenin was expressed exceptionally, and EMT was prompted. Wnt5a overexpression increased clone formation, migration, and invasion, as well as prompted EMT of NSCLC cell in vitro, whereas Wnt5a knockdown showed the absolutely reversed results. Wnt5a overexpression enhanced the Tcf/Lef transcriptional activity and elevated the nuclear β-catenin level in NSCLC cells, without altering the ROR2 expression. We also demonstrated that si-β-catenin antagonized Wnt5a overexpression nduced EMT and invasiveness. Besides, in vivo experiment showed that sh-Wnt5a significantly increased tumor volume and tumor weight, and prompted EMT in A549 tumor-bearing mice as compared with the control. No metastasis was found in the liver tissue after sh-Wnt5a-transfected cells were orthotopically injected into nude mice as compared with the control. In conclusion, Wnt5a promotes EMT and metastasis in NSCLC, which is involved in the activation of β-catenin-dependent canonical Wnt signaling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。