Reduction of polystyrene/polyurethane plastic wastes from the environment into binders for water-resistant emulsion paints

将环境中的聚苯乙烯/聚氨酯塑料废物减少为防水乳胶漆的粘合剂

阅读:9
作者:Sunday A Osemeahon, Ayodele Akinterinwa, Esther Fasina, Fartisincha P Andrew, Muhammed H Shagal, Semiu A Kareem, Usaku Reuben, Patience U Onyebuchi, Olubukola R Adelagun, David Esenowo

Abstract

Waste management is fundamental to resource and environmental sustainability. Expanded polystyrene (EPS) and polyurethane (PU) waste plastics were recycled and applied as binder in emulsion paint formulation. The recycled polystyrene (rPS) and polyurethane (rPU) were blended into composite resins, where toluene was used as the solvent. The blends of rPS and rPU were optimized, while some physicochemical properties of the composite blends (rPS/PU) were evaluated. The results showed that the incorporation of rPU into rPS increased the viscosity (1818 mPa-3924 mPa), rate of gelation (dry-to-touch time: 15 min-0.25 min), moisture content (2.7%-8.1%), moisture uptake (3.2%-5.0%), solid content (48%-53.4%) and density (0.82 g/cm3 to 1.050.82 g/cm3) of the rPS/PU composite resins. Characterization was carried out using Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscope (SEM), and atomic force microscopy (AFM). The results summarily showed that there are interactions among the rPS and rPU molecules in the composite, where complimentary structural and morphological characteristics were also achieved. The composite resin also exhibited superior bond strength (0.5-4.24 Mpa) on wood, cast mortar, ceramic, and steel surfaces due to its stronger intra- and inter-surface interactions compared to the neat rPS resin. The composite resin was used as a binder in the formulation of emulsion paint. The paint exhibited stronger resistance to water, among other superior properties, when compared to the paints formulated using neat rPS and conventional polyvinyl acetate (PVA) resins. The reduction of plastic waste in this study holds potential for the production of highly water-resistant emulsion paint for outdoor and indoor applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。