Mandible and iliac osteoblasts exhibit different Wnt signaling responses to LMHF vibration

下颌骨和髂骨成骨细胞对 LMHF 振动表现出不同的 Wnt 信号反应

阅读:7
作者:Anute Pravitharangul, Srisurang Suttapreyasri, Chidchanok Leethanakul

Conclusions

This study demonstrates mandible osteoblasts and long bone osteoblasts respond differently to LMHF mechanical vibration in terms of Wnt signaling expression and ALP activity. Therefore, the effects of whole-body vibration on the long bones cannot be generalized to the jaw bones. Furthermore, osteoblast-like cells mediate the cellular responses to vibration, at least in part, by secreting extracellular signaling molecules.

Methods

Primary human osteoblast cultures were prepared from mandibular bone (n = 3) and iliac bone (n = 3) specimens (six individuals). Osteoblast cell lines were subjected to vibration (0, 30, 60, 90, or 120 Hz) for 30 min. After 24 h, cells were vibrated for 30 min again, then harvested immediately to quantify Wnt10b, Wnt5a and runt-related transcription factor 2 (RUNX2) mRNA expression, β-catenin protein expression and alkaline phosphatase (ALP) activity.

Objective

The jaw bones and long bones have distinct developmental origins and respond differently to mechanical stimuli. This study aimed to compare the Wnt signaling responses of human mandible osteoblasts and long bone osteoblasts to low-magnitude, high-frequency (LMHF) mechanical vibration in vitro.

Results

Mandible and iliac osteoblasts responded differently to LMHF vibration: Wnt10b mRNA was upregulated by the frequency range tested; Wnt5a, β-catenin protein expression and RUNX2 mRNA expression were not altered. Furthermore, vibration upregulated ALP activity in mandible osteoblasts, but not in iliac osteoblasts. Conclusions: This study demonstrates mandible osteoblasts and long bone osteoblasts respond differently to LMHF mechanical vibration in terms of Wnt signaling expression and ALP activity. Therefore, the effects of whole-body vibration on the long bones cannot be generalized to the jaw bones. Furthermore, osteoblast-like cells mediate the cellular responses to vibration, at least in part, by secreting extracellular signaling molecules.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。