Effect of TiO2-ZnO-MgO Mixed Oxide on Microbial Growth and Toxicity against Artemia salina

TiO2-ZnO-MgO复合氧化物对卤虫生长及毒性的影响

阅读:11
作者:Luis M Anaya-Esparza, Napoleón González-Silva, Elhadi M Yahia, O A González-Vargas, Efigenia Montalvo-González, Alejandro Pérez-Larios

Abstract

Mixed oxide nanoparticles (MONs, TiO2-ZnO-MgO) obtained by the sol-gel method were characterized by transmission electron microscopy, (TEM, HRTEM, and SAED) and thermogravimetric analysis (TGA/DTGA-DTA). Furthermore, the effect of MONs on microbial growth (growth profiling curve, lethal and sublethal effect) of Escherichia coli, Salmonella paratyphi, Staphylococcus aureus and Listeria monocytogenes, as well as the toxicity against Artemia salina by the lethal concentration test (LC50) were evaluated. MONs exhibited a near-spherical in shape, polycrystalline structure and mean sizes from 17 to 23 nm. The thermal analysis revealed that the anatase phase of MONs is completed around 480-500 °C. The normal growth of all bacteria tested is affected by the MONs presence compared with the control group. MONs also exhibited a reduction on the plate count from 0.58 to 2.10 log CFU/mL with a sublethal cell injury from 17 to 98%. No significant toxicity within 24 h was observed on A. salina. A bacteriostatic effect of MONs on bacteria was evidenced, which was strongly influenced by the type of bacteria, as well as no toxic effects (LC50 >1000 mg/L; TiO2-ZnO (5%)-MgO (5%)) on A. salina were detected. This study demonstrates the potential of MONs for industrial applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。