Inversion recovery zero echo time (IR-ZTE) imaging for direct myelin detection in human brain: a feasibility study

反转恢复零回波时间 (IR-ZTE) 成像直接检测人脑髓鞘:可行性研究

阅读:5
作者:Hyungseok Jang, Michael Carl, Yajun Ma, Adam C Searleman, Saeed Jerban, Eric Y Chang, Jody Corey-Bloom, Jiang Du

Background

Myelin alteration is closely associated with neurological diseases such as multiple sclerosis (MS). Unfortunately, due to myelin's extremely short T2* (~0.3 ms or shorter at 3T), it cannot be directly imaged with conventional MR imaging techniques. Recently, ultrashort echo time (UTE) imaging-based

Conclusions

Adiabatic IR prepared dual echo ZTE imaging allows for direct, volumetric imaging of myelin in white matter of the brain in vivo.

Methods

In the proposed method, an adiabatic IR preparation pulse is used to suppress long T2 white matter signal, followed by dual echo ZTE imaging where the remaining long T2 components, including gray matter, are suppressed by dual echo subtraction. In the implementation of ZTE, the sampling strategy introduced in Water- and Fat-Suppressed Proton Projection MRI (WASPI) was incorporated to acquire the k-space data missing due to the radiofrequency (RF) transmit/receiver switching time. The IR-ZTE sequence was implemented on a 3T clinical MR system and evaluated using a myelin phantom composed of six different myelin concentrations (0% to 20%), a cadaveric human brain, four healthy volunteers, and seven MS patients.

Results

In the myelin phantom experiment, the ZTE signal intensity showed high linearity to the myelin concentrations (R2=0.98). In the ex vivo and in vivo experiments, the IR-ZTE sequence provided high contrast volumetric imaging of myelin in human brains. The IR-ZTE sequence was able to detect demyelinated foci lesions in all MS patients. Conclusions: Adiabatic IR prepared dual echo ZTE imaging allows for direct, volumetric imaging of myelin in white matter of the brain in vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。