AGAMOUS-LIKE67 Cooperates with the Histone Mark Reader EBS to Modulate Seed Germination under High Temperature

AGAMOUS-LIKE67 与组蛋白标记读取器 EBS 协同调节高温下的种子发芽

阅读:6
作者:Ping Li, Qili Zhang, Danni He, Yun Zhou, Huanhuan Ni, Dagang Tian, Guanxiao Chang, Yanjun Jing, Rongcheng Lin, Jinling Huang, Xiangyang Hu

Abstract

Seed germination is a vital developmental process that is tightly controlled by environmental signals, ensuring germination under favorable conditions. High temperature (HT) suppresses seed germination. This process, known as thermoinhibition, is achieved by activating abscisic acid and inhibiting gibberellic acid biosynthesis. The zinc-finger protein SOMNUS (SOM) participates in thermoinhibition of seed germination by altering gibberellic acid/abscisic acid metabolism, but the underlying regulatory mechanism is poorly understood. In this study, we report that SOM binds to its own promoter and activates its own expression in Arabidopsis (Arabidopsis thaliana) and identify the MADS-box transcription factor AGAMOUS-LIKE67 (AGL67) as a critical player in SOM function, based on its ability to recognize CArG-boxes within the SOM promoter and mediate the trans-activation of SOM under HTs. In addition, AGL67 recruits the histone mark reader EARLY BOLTING IN SHORT DAY (EBS), which recognizes H3K4me3 at SOM chromatin. In response to HTs, AGL67 and EBS are highly enriched around the SOM promoter. The AGL67-EBS complex is also necessary for histone H4K5 acetylation, which activates SOM expression, ultimately inhibiting seed germination. Taken together, our results reveal an essential mechanism in which AGL67 cooperates with the histone mark reader EBS, which bridges the process of H3K4me3 recognition with H4K5 acetylation, thereby epigenetically activating SOM expression to suppress seed germination under HT stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。