Abstract
Exercise-induced loss of skeletal muscle K(+) can seriously impede muscle performance through membrane depolarization. Thus far, it has been assumed that the negative equilibrium potential and large membrane conductance of Cl(-) attenuate the loss of force during hyperkalaemia. We questioned this idea because there is some evidence that Cl(-) itself can exert a depolarizing influence on membrane potential (V(m)). With this study we tried to identify the possible roles played by Cl(-) during hyperkalaemia. Isolated rat soleus muscles were kept at 25 degrees C and twitch contractions were evoked by current pulses. Reducing [Cl(-)](o) to 5 mM, prior to introducing 12.5 mM K(o), prevented the otherwise occurring loss of force. Reversing the order of introducing these two solutions revealed an additional effect, i.e. the ongoing hyperkalaemia-related loss of force was sped up tenfold after reducing [Cl(-)](o). However, hereafter twitch force recovered completely. The recovery of force was absent at [K(+)](o) exceeding 14 mM. In addition, reducing [Cl(-)](o) increased membrane excitability by 24%, as shown by a shift in the relationship between force and current level. Measurements of V(m) indicated that the antagonistic effect of reducing [Cl(-)](o) on hyperkalaemia-induced loss of force was due to low-Cl(-)-induced membrane hyperpolarization. The involvement of specific Cl(-) conductance was established with 9-anthracene carboxylic acid (9-AC). At 100 microm, 9-AC reduced the loss of force due to hyperkalaemia, while at 200 microm, 9-AC completely prevented loss of force. To study the role of the Na(+)-K(+)-2Cl(-) cotransporter (NKCC1) in this matter, we added 400 microm of the NKCC inhibitor bumetanide to the incubation medium. This did not affect the hyperkalaemia-induced loss of force. We conclude that Cl(-) exerts a permanent depolarizing influence on V(m). This influence of Cl(-) on V(m), in combination with a large membrane conductance, can apparently have two different effects on hyperkalaemia-induced loss of force. It might exert a stabilizing influence on force production during short periods of hyperkalaemia, but it can add to the loss of force during prolonged periods of hyperkalaemia.
