Normalization methods in time series of platelet function assays: A SQUIRE compliant study

血小板功能分析时间序列的标准化方法:符合 SQUIRE 标准的研究

阅读:4
作者:Sven Van Poucke, Zhongheng Zhang, Mark Roest, Milan Vukicevic, Maud Beran, Bart Lauwereins, Ming-Hua Zheng, Yvonne Henskens, Marcus Lancé, Abraham Marcus

Abstract

Platelet function can be quantitatively assessed by specific assays such as light-transmission aggregometry, multiple-electrode aggregometry measuring the response to adenosine diphosphate (ADP), arachidonic acid, collagen, and thrombin-receptor activating peptide and viscoelastic tests such as rotational thromboelastometry (ROTEM).The task of extracting meaningful statistical and clinical information from high-dimensional data spaces in temporal multivariate clinical data represented in multivariate time series is complex. Building insightful visualizations for multivariate time series demands adequate usage of normalization techniques.In this article, various methods for data normalization (z-transformation, range transformation, proportion transformation, and interquartile range) are presented and visualized discussing the most suited approach for platelet function data series.Normalization was calculated per assay (test) for all time points and per time point for all tests.Interquartile range, range transformation, and z-transformation demonstrated the correlation as calculated by the Spearman correlation test, when normalized per assay (test) for all time points. When normalizing per time point for all tests, no correlation could be abstracted from the charts as was the case when using all data as 1 dataset for normalization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。