Melatonin and KNO3 Application Improves Growth, Physiological and Biochemical Characteristics of Maize Seedlings under Waterlogging Stress Conditions

褪黑素和硝酸钾施用可改善涝渍胁迫下玉米幼苗的生长和生理生化特性

阅读:5
作者:Shakeel Ahmad, Guo-Yun Wang, Ihsan Muhammad, Muhammad Zeeshan, Xun-Bo Zhou

Abstract

Waterlogging is one of the serious abiotic stresses that inhibits crop growth and reduces productivity. Therefore, investigating efficient waterlogging mitigation measures has both theoretical and practical significance. The objectives of the present research were to examine the efficiency of melatonin and KNO3 seed soaking and foliar application on alleviating the waterlogging inhibited growth performance of maize seedlings. In this study, 100 µM melatonin and different levels (0.25, 0.50 and 0.75 g) of potassium nitrate (KNO3) were used in seed soaking and foliar applications. For foliar application, treatments were applied at the 7th leaf stage one week after the imposition of waterlogging stress. The results showed that melatonin with KNO3 significantly improved the plant growth and biochemical parameters of maize seedlings under waterlogging stress conditions. However, the application of melatonin with KNO3 treatments increased plant growth characteristics, chlorophyll content, and the net photosynthetic rate at a variable rate under waterlogging stress. Furthermore, melatonin with KNO3 treatments significantly reduced the accumulation of hydrogen peroxide (H2O2) and malondialdehyde (MDA), and it decreased the activity of pyruvate decarboxylase and alcohol dehydrogenase, while increasing enzymatic activities and soluble protein content of maize seedlings under waterlogging stress conditions. Overall, our results indicated that seed soaking with 100 µM melatonin and 0.50 g KNO3 was the most effective treatment that significantly improved the plant growth characteristics, chlorophyll content, photosynthetic rate, and enzymatic activity of maize seedling under waterlogging conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。