Mechanisms underlying a decrease in KCl-induced contraction after long-term serum-free organ culture of rat isolated mesenteric artery

大鼠离体肠系膜动脉长期无血清器官培养后氯化钾诱发收缩减弱的机制

阅读:7
作者:Tomoka Morita, Muneyoshi Okada, Hideyuki Yamawaki

Abstract

Organ culture of blood vessel is a better technique to investigate the long-term effects of drugs. However, some functional changes may occur from freshly isolated vessel (Fresh). Mammalian/mechanistic target of rapamycin (mTOR) regulates smooth muscle differentiation and Ca(2+) mobilization. We thus investigated mechanisms of alteration in smooth muscle contractility after serum-free organ culture focusing on mTOR. Rat isolated mesenteric arteries were cultured for 5 days without (0% serum) or with rapamycin. In 0% serum, absolute contraction by KCl significantly decreased from Fresh, which was significantly rescued by rapamycin. In 0% serum, mTOR expression significantly increased from Fresh, which was significantly rescued by rapamycin. In 0% serum, expression of myocardin, a key regulator of smooth muscle differentiation markers, significantly decreased from Fresh, which was significantly rescued by rapamycin. However, the decrease in expression of contractile proteins, including SM22α and calponin, was not changed by rapamycin. Basal phosphorylation of calmodulin-dependent protein kinase II significantly increased in 0% serum, which was significantly rescued by rapamycin. In 0% serum, absolute contraction by caffeine significantly decreased from Fresh, which was significantly rescued by rapamycin. In conclusion, expression of mTOR increased during serum-free organ culture of rat isolated mesenteric artery for 5 days, which may be at least partly responsible for the decreased smooth muscle contractility perhaps due to the decrease in the stored Ca(2+) in smooth muscle.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。