Proteome-wide Analysis of Lysine 2-hydroxyisobutyrylation in Developing Rice (Oryza sativa) Seeds

水稻 (Oryza sativa) 种子发育过程中赖氨酸 2-羟基异丁酰化的蛋白质组分析

阅读:4
作者:Xiaoxi Meng, Shihai Xing, Loida M Perez, Xiaojun Peng, Qingyong Zhao, Edilberto D Redoña, Cailin Wang, Zhaohua Peng

Abstract

Lysine 2-hydroxyisobutyrylation is a recently identified protein post-translational modification that is known to affect the association between histone and DNA. However, non-histone protein lysine 2-hydroxyisobutyrylation remains largely unexplored. Utilizing antibody-based affinity enrichment and nano-HPLC/MS/MS analyses of 2-hydroxyisobutyrylation peptides, we efficaciously identified 9,916 2-hydroxyisobutyryl lysine sites on 2,512 proteins in developing rice seeds, representing the first lysine 2-hydroxyisobutyrylome dataset in plants. Functional annotation analyses indicated that a wide variety of vital biological processes were preferably targeted by lysine 2-hydroxyisobutyrylation, including glycolysis/gluconeogenesis, TCA cycle, starch biosynthesis, lipid metabolism, protein biosynthesis and processing. Our finding showed that 2-hydroxyisobutyrylated histone sites were conserved across plants, human, and mouse. A number of 2-hydroxyisobutyryl sites were shared with other lysine acylations in both histone and non-histone proteins. Comprehensive analysis of the lysine 2-hydroxyisobutyrylation sites illustrated that the modification sites were highly sequence specific with distinct motifs, and they had less surface accessibility than other lysine residues in the protein. Overall, our study provides the first systematic analysis of lysine 2-hydroxyisobutyrylation proteome in plants, and it serves as an important resource for future investigations of the regulatory mechanisms and functions of lysine 2-hydroxyisobutyrylation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。