Low-Dose Cadmium Potentiates Metabolic Reprogramming Following Early-Life Respiratory Syncytial Virus Infection

低剂量镉增强早期呼吸道合胞病毒感染后的代谢重编程

阅读:12
作者:Zachery R Jarrell, Matthew Ryan Smith, Ki-Hye Kim, Youri Lee, Xin Hu, Xiaojia He, Michael Orr, Yan Chen, Sang-Moo Kang, Dean P Jones, Young-Mi Go

Abstract

Respiratory syncytial virus (RSV) infection causes serious pulmonary disease and death in high-risk infants and elderly. Cadmium (Cd) is a toxic environmental metal contaminant and constantly exposed to humans. Limited information is available on Cd toxicity after early-life respiratory virus infection. In this study, we examined the effects of low-dose Cd exposure following early-life RSV infection on lung metabolism and inflammation using mouse and fibroblast culture models. C57BL/6J mice at 8 days old were exposed to RSV 2 times with a 4-week interval. A subset of RSV-infected mice was subsequently treated with Cd at a low dose in drinking water (RSV infection at infant age [RSVinf]+Cd) for 16 weeks. The results of inflammatory marker analysis showed that the levels of cytokines and chemokines were substantially higher in RSVinf+Cd group than other groups, implying that low-dose Cd following early-life RSV infection enhanced lung inflammation. Moreover, histopathology data showed that inflammatory cells and thickening of the alveolar walls as a profibrotic signature were evident in RSVinf+Cd. The metabolomics data revealed that RSVinf+Cd-caused metabolic disruption in histamine and histidine, vitamin D and urea cycle, and pyrimidine pathway accompanying with mechanistic target of rapamycin complex-1 activation. Taken together, our study demonstrates for the first time that cumulative Cd exposure following early-life RSV infection has a significant impact on subsequent inflammation and lung metabolism. Thus, early-life respiratory infection may reprogram metabolism and potentiate Cd toxicity, enhance inflammation, and cause fibrosis later in life.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。