TOP2A inhibition and its cellular effects related to cell cycle checkpoint adaptation pathway

TOP2A 抑制及其与细胞周期检查点适应通路相关的细胞效应

阅读:5
作者:Maria C Arroyo López #, M A Fernández-Mimbrera #, E Gollini, A Esteve-Codina, A Sánchez, Juan Alberto Marchal Ortega

Abstract

In this study, we investigate the G2 checkpoint activated by chromosome entanglements, the so-called Decatenation Checkpoint (DC), which can be activated by TOP2A catalytic inhibition. Specifically, we focus on the spontaneous ability of cells to bypass or override this checkpoint, referred to as checkpoint adaptation. Some factors involved in adapting to this checkpoint are p53 and MCPH1. Using cellular models depleted of p53 or both p53 and MCPH1 in hTERT-RPE1 cells, we analyzed cell cycle dynamics and adaptation, segregation defects, apoptosis rate, and transcriptional changes related to prolonged exposure to TOP2A inhibitors. Our findings reveal that cell cycle dynamics are altered in MCPH1-depleted cells compared to control cells. We found that MCPH1 depletion can restore the robustness of the DC in a p53-negative background. Furthermore, this research highlights the differential effects of TOP2A poisons and catalytic inhibitors on cellular outcomes and transcriptional profiles. By examining the different mechanisms of TOP2A inhibition and their impact on cellular processes, this study contributes to a deeper understanding of the regulation and physiological implications of the DC and checkpoint adaptation in non-carcinogenic cell lines.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。