Tunable Microgel-Templated Porogel (MTP) Bioink for 3D Bioprinting Applications

用于 3D 生物打印应用的可调微凝胶模板多孔凝胶 (MTP) 生物墨水

阅读:5
作者:Liliang Ouyang, Jonathan P Wojciechowski, Jiaqing Tang, Yuzhi Guo, Molly M Stevens

Abstract

Micropores are essential for tissue engineering to ensure adequate mass transportation for embedded cells. Despite the considerable progress made by advanced 3D bioprinting technologies, it remains challenging to engineer micropores of 100 µm or smaller in cell-laden constructs. Here, a microgel-templated porogel (MTP) bioink platform is reported to introduce controlled microporosity in 3D bioprinted hydrogels in the presence of living cells. Templated gelatin microgels are fabricated with varied sizes (≈10, ≈45, and ≈100 µm) and mixed with photo-crosslinkable formulations to make composite MTP bioinks. The addition of microgels significantly enhances the shear-thinning and self-healing viscoelastic properties and thus the printability of bioinks with cell densities up to 1 × 108 mL-1 in matrix. Consistent printability is achieved for a series of MTP bioinks based on different component ratios and matrix materials. After photo-crosslinking the matrix phase, the templated microgels dissociated and diffused under physiological conditions, resulting in corresponding micropores in situ. When embedding osteoblast-like cells in the matrix phase, the MTP bioinks support higher metabolic activity and more uniform mineral formation than bulk gel controls. The approach provides a facile strategy to engineer precise micropores in 3D printed structures to compensate for the limited resolution of current bioprinting approaches.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。