Contrasting roles of E2F2 and E2F3 in endothelial cell growth and ischemic angiogenesis

E2F2 和 E2F3 在内皮细胞生长和缺血性血管生成中的作用对比

阅读:5
作者:Junlan Zhou, Min Cheng, Min Wu, Chan Boriboun, Kentaro Jujo, Shiyue Xu, Ting C Zhao, Yao-Liang Tang, Raj Kishore, Gangjian Qin

Abstract

The growth of new blood vessels after ischemic injury requires endothelial cells (ECs) to divide and proliferate, and the E2F transcription factors are key regulators of the genes responsible for cell-cycle progression; however, the specific roles of individual E2Fs in ECs are largely unknown. To determine the roles of E2F2 and E2F3 in EC proliferation and the angiogenic response to ischemic injury, hind-limb ischemia was surgically induced in E2F2(-/-) mice, endothelial-specific E2F3-knockout (EndoE2F3(∆/∆)) mice, and their littermates with wild-type E2F2 and E2F3 expression. Two weeks later, Laser-Doppler perfusion measurements, capillary density, and endothelial proliferation were significantly greater in E2F2(-/-) mice and significantly lower in EndoE2F3(∆/∆) mice than in their littermates, and EndoE2F3(∆/∆) mice also developed toe and limb necrosis. The loss of E2F2 expression was associated with increases in the proliferation and G1/S-phase gene expression of isolated ECs, while the loss of E2F3 expression led to declines in these parameters. Thus E2F2 impairs, and endothelial E2F3 promotes, the angiogenic response to peripheral ischemic injury through corresponding changes in EC cell-cycle progression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。