A combined top-down and bottom-up MS approach for the characterization of hemoglobin variants in Rhesus monkeys

采用自上而下和自下而上的 MS 方法表征恒河猴的血红蛋白变异

阅读:5
作者:Ruth Hüttenhain, Sonja Hess

Abstract

Sickle cell disease is caused by one of the 1200 known hemoglobin variations. A single-point mutation β6(A3)Glu→Val leads to sickling of red blood cells, which in turn causes a lack of oxygen supply to tissue and organs. Although sickle cell disease is well understood, treatment options are currently underdeveloped. The only Food and Drug Administration-approved drug is hydroxyurea, an inducer of fetal γ-hemoglobin, which is known to have a higher oxygen affinity than adult hemoglobins and thus alleviates symptoms. In the search for better cures, Rhesus monkeys (Macaca mulatta) serve as models for monitoring success of induction of fetal γ-hemoglobins and with recent advances in proteomics, MS has become the leading technique to determine globin expression. Similar to humans, Rhesus monkeys possess hemoglobin variants that have not been sufficiently characterized to initiate such a study. Therefore, we developed a combined bottom-up and top-down approach to identify and characterize novel hemoglobin variants of the umbilical cord blood of Rhesus monkeys. A total of four different variants were studied: α, β, γ1 and γ2. A new α- and β-hemoglobin variant was identified, and the two previously hypothesized γ-hemoglobins were identified. In addition, glutathionylation of both γ-hemoglobin variants at their cysteines has been characterized. The combined approach outperformed either bottom-up or top-down alone and can be used for characterization of unknown hemoglobin variants and their PTMs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。