Conclusion
SA protected against diabetes-induced gastrocnemius injury via improvement of mitochondrial function, endoplasmic reticulum (ER) stress, and apoptosis, and could be developed to prevent and treat diabetic muscle atrophy.
Methods
The model of diabetic mice was established by intraperitoneal STZ (200 mg/kg) to evaluate the treatment effect of SA (40 mg/kg/d for 8 weeks) on muscle atrophy. Muscle fiber size was assessed by Hematoxylin and Eosin (HE) staining. Muscle force was measured by a dynamometer. Biochemical parameters were tested by using corresponding commercial kits. The expressions of Atrogin-1, MuRF-1, nuclear respiratory factor 1 (NRF-1), peroxisome proliferative activated receptor gamma coactivator 1 alpha (PGC-1α), CHOP, GRP-78, BAX, and BCL-2 were detected by Western blot.
Results
Our data demonstrated that SA increased fiber size and weight of gastrocnemius, and enhanced grip strength to alleviate diabetes-induced muscle atrophy. In serum, SA restrained creatine kinase (CK), lactate dehydrogenase (LDH), malondialdehyde (MDA), tumor necrosis factor (TNF-a), and interleukin 6 (IL-6) levels, while enhancing total anti-oxidant capacity (T-AOC), superoxide dismutase (SOD) and catalase (CAT) levels to improve muscle injury. In gastrocnemius, SA promoted NRF-1, PGC-1α, and BCL-2 expressions, while inhibiting Atrogin-1, MuRF-1, CHOP, GRP-87, and BAX expressions.
