Molecular alterations in primary prostate cancer after androgen ablation therapy

雄激素消融治疗后原发性前列腺癌的分子改变

阅读:6
作者:Carolyn J M Best, John W Gillespie, Yajun Yi, Gadisetti V R Chandramouli, Mark A Perlmutter, Yvonne Gathright, Heidi S Erickson, Lauren Georgevich, Michael A Tangrea, Paul H Duray, Sergio González, Alfredo Velasco, W Marston Linehan, Robert J Matusik, Douglas K Price, William D Figg, Michael R Emmer

Conclusions

Taken together, these data identify several unique characteristics of androgen-independent prostate cancer that may hold potential for the development of targeted therapeutic intervention.

Purpose

After an initial response to androgen ablation, most prostate tumors recur, ultimately progressing to highly aggressive androgen-independent cancer. The molecular mechanisms underlying progression are not well known in part due to the rarity of androgen-independent samples from primary and metastatic sites. Experimental design: We compared the gene expression profiles of 10 androgen-independent primary prostate tumor biopsies with 10 primary, untreated androgen-dependent tumors. Samples were laser capture microdissected, the RNA was amplified, and gene expression was assessed using Affymetrix Human Genome U133A GeneChip. Differential expression was examined with principal component analysis, hierarchical clustering, and Student's t testing. Analysis of gene ontology was done with Expression Analysis Systematic Explorer and gene expression data were integrated with genomic alterations with Differential Gene Locus Mapping.

Results

Unsupervised principal component analysis showed that the androgen-dependent and androgen-independent tumors segregated from one another. After filtering the data, 239 differentially expressed genes were identified. Two main gene ontologies were found discordant between androgen-independent and androgen-dependent tumors: macromolecule biosynthesis was down-regulated and cell adhesion was up-regulated in androgen-independent tumors. Other differentially expressed genes were related to interleukin-6 signaling as well as angiogenesis, cell adhesion, apoptosis, oxidative stress, and hormone response. The Differential Gene Locus Mapping analysis identified nine regions of potential chromosomal deletion in the androgen-independent tumors, including 1p36, 3p21, 6p21, 8p21, 11p15, 11q12, 12q23, 16q12, and 16q21. Conclusions: Taken together, these data identify several unique characteristics of androgen-independent prostate cancer that may hold potential for the development of targeted therapeutic intervention.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。