A Comparative Study on the Role of Polyvinylpyrrolidone Molecular Weight on the Functionalization of Various Carbon Nanotubes and Their Composites

聚乙烯吡咯烷酮分子量对不同碳纳米管及其复合材料功能化影响的比较研究

阅读:4
作者:Muthuraman Namasivayam, Mats R Andersson, Joseph G Shapter

Abstract

Polyvinylidene fluoride (PVDF) nanocomposites filled with polyvinylpyrrolidone (PVP) wrapped carbon nanotubes were prepared via a solution casting technique. The effect of the molecular weight (polymer chain length) of the PVP on the ability to wrap different nanotube structures and its impact towards nanotube dispersibility in the polymer matrix was explored. The study was conducted with PVP of four different molecular weights and nanotubes of three different structures. The composites that exhibit an effective nanotube dispersion lead to a nanotube network that facilitates improved thermal, electrical, and mechanical properties. It was observed that nanotubes of different structures exhibit stable dispersions in the polymer matrix though PVP functionalization of different molecular weights, but the key is achieving an effective nanotube dispersion at low PVP concentrations. This is observed in MWNT and AP-SWNT based composites with PVP of low molecular weight, leading to a thermal conductivity enhancement of 147% and 53%, respectively, while for P3-SWNT based composites, PVP of high molecular weight yields an enhancement of 25% in thermal conductivity compared to the non-functionalized CNT-PVDF composite.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。