Implementing the chick embryo model to study vestibular developmental disorders

利用鸡胚模型研究前庭发育障碍

阅读:2
作者:Hayley E Seal, Sigmund J Lilian, Anastas Popratiloff, June C Hirsch, Kenna D Peusner

Abstract

Children with congenital vestibular disorders show delayed motor development and challenges in maintaining posture and balance. Computed tomography images reveal that these children have abnormal inner ears in the form of a sac, with the semicircular canals missing or truncated. Little is known about how this inner ear abnormality affects central vestibular development. At present, mice with the chromodomain helicase DNA-binding protein 7 mutation are the most common model for studying congenital vestibular disorders, despite forming multiple diverse inner ear phenotypes and inducing abnormal cerebellar and visual system development. To identify the effects of a sac-like inner ear on central vestibular development, we have designed and implemented a new model, the anterior-posterior axis rotated otocyst (ARO) chick, which forms a sac-like inner ear in 85% of cases. The ARO chick is produced by anterior-posterior rotation of the otocyst at embryonic day 2. Here, we describe for the first time the 15% of ARO chicks that form three small semicircular canals and rename the ARO chicks forming sacs (ARO/s chicks). The basic features of the vestibular sensory organs in ARO/s chicks are similar to those found in patients' sacs, and ARO/s hatchlings experience balance and walking problems like patients. Thus, ARO/s chicks have a reproducible inner ear phenotype without abnormalities in vestibular-related structures, making the model a relatively simple one to evaluate the relationship between the sac-like inner ear pathology and formation of the central vestibular neural circuitry. Here, we describe unpublished details on the surgical approaches to produce ARO chicks, including pitfalls and difficulties to avoid.NEW & NOTEWORTHY This paper describes simple techniques for chick otocyst rotation resulting in a sac-like inner ear (85%), the common phenotype in congenital vestibular disorders. We now describe anterior-posterior axis rotated otocyst chicks, which form three small canals (15%), and rename chicks forming a sac (ARO/s chicks). Basic protocols and potential complications of otocyst rotation are described. With the use of ARO/s chicks, it will be possible to determine how the vestibular neural circuit is modified by sac-like inner ear formation.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。