Assessment of sesquiterpene lactones isolated from Mikania plants species for their potential efficacy against Trypanosoma cruzi and Leishmania sp

评估从薇甘菊植物中分离的倍半萜内酯对克氏锥虫和利什曼原虫的潜在功效

阅读:4
作者:Laura C Laurella, Natacha Cerny, Augusto E Bivona, Andrés Sánchez Alberti, Gustavo Giberti, Emilio L Malchiodi, Virginia S Martino, Cesar A Catalan, María Rosario Alonso, Silvia I Cazorla, Valeria P Sülsen

Abstract

Four sesquiterpene lactones, mikanolide, deoxymikanolide, dihydromikanolide and scandenolide, were isolated by a bioassay-guided fractionation of Mikania variifolia and Mikania micrantha dichloromethane extracts. Mikanolide and deoxymikanolide were the major compounds in both extracts (2.2% and 0.4% for Mikania variifolia and 21.0% and 6.4% for Mikania micrantha respectively, calculated on extract dry weight). Mikanolide, deoxymikanolide and dihydromikanolide were active against Trypanosoma cruzi epimastigotes (50% inhibitory concentrations of 0.7, 0.08 and 2.5 μg/mL, for each compound respectively). These sesquiterpene lactones were also active against the bloodstream trypomastigotes (50% inhibitory concentrations for each compound were 2.1, 1.5 and 0.3 μg/mL, respectively) and against amastigotes (50% inhibitory concentrations for each compound were 4.5, 6.3 and 8.5 μg/mL, respectively). By contrast, scandenolide was not active on Trypanosoma cruzi. Besides, mikanolide and deoxymikanolide were also active on Leishmania braziliensis promastigotes (50% inhibitory concentrations of 5.1 and 11.5 μg/mL, respectively). The four sesquiterpene lactones were tested for their cytotoxicity on THP 1 cells. Deoxymikanolide presented the highest selectivity index for trypomastigotes (SI = 54) and amastigotes (SI = 12.5). In an in vivo model of Trypanosoma cruzi infection, deoxymikanolide was able to decrease the parasitemia and the weight loss associated to the acute phase of the parasite infection. More importantly, while 100% of control mice died by day 22 after receiving a lethal T. cruzi infection, 70% of deoxymikanolide-treated mice survived. We also observed that this compound increased TNF-α and IL-12 production by macrophages, which could contribute to control T. cruzi infection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。