Application of volumetric absorptive microsampling for robust, high-throughput mass spectrometric quantification of circulating protein biomarkers

应用体积吸收微量采样对循环蛋白生物标志物进行稳健、高通量质谱定量分析

阅读:5
作者:Irene van den Broek, Qin Fu, Stuart Kushon, Michael P Kowalski, Kevin Millis, Andrew Percy, Ronald J Holewinski, Vidya Venkatraman, Jennifer E Van Eyk

Abstract

Volumetric absorptive micro sampling (VAMS™) allows accurate sampling of 10 µL of blood from a minimally invasive finger prick and could enable remote personalized health monitoring. Moreover, VAMS overcomes effects from hematocrit and sample heterogeneity associated with dried blood spots (DBS). We describe the first application of VAMS with the Mitra® microsampling device for the quantification of protein biomarkers using an automated, high-throughput sample preparation method coupled with mass spectrometric (MS) detection. The analytical performance of the developed workflow was evaluated for 10 peptides from six clinically relevant proteins: apolipoproteins A-I, B, C-I, C-III, E, and human serum albumin (HSA). Extraction recovery from blood with three different levels of hematocrit varied between 100% and 111% for all proteins. Within-day and total assay reproducibility (i.e., 5 replicates on 5 days) ranged between 3.2-10.4% and 3.4-12.6%, respectively. In addition, after 22 weeks of storage of the Mitra microsampling devices at -80 °C, all peptide responses were within ±15% deviation from the initial response. Application to data-independent acquisition (DIA) MS further demonstrated the potential for broad applicability and the general robustness of the automated workflow by reproducible detection of 1661 peptides from 423 proteins (average 15.7%CV (n = 3) in peptide abundance), correlating to peptide abundances in corresponding plasma (R = 0.8383). In conclusion, we have developed an automated workflow for efficient extraction, digestion, and MS analysis of a variety of proteins in a fixed small volume of dried blood (i.e., 10 µL). This robust and high-throughput workflow will create manifold opportunities for the application of remote, personalized disease biomarker monitoring.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。