Calmodulin HvCaM1 Negatively Regulates Salt Tolerance via Modulation of HvHKT1s and HvCAMTA4

钙调蛋白 HvCaM1 通过调节 HvHKT1s 和 HvCAMTA4 来负向调节耐盐性

阅读:9
作者:Qiufang Shen, Liangbo Fu, Tingting Su, Lingzhen Ye, Lu Huang, Liuhui Kuang, Liyuan Wu, Dezhi Wu, Zhong-Hua Chen, Guoping Zhang

Abstract

Calcium (Ca2+) signaling modulates sodium (Na+) transport in plants; however, the role of the Ca2+ sensor calmodulin (CaM) in salt tolerance is elusive. We previously identified a salt-responsive calmodulin (HvCaM1) in a proteome study of barley (Hordeum vulgare) roots. Here, we employed bioinformatic, physiological, molecular, and biochemical approaches to determine the role of HvCaM1 in barley salt tolerance. CaM1s are highly conserved in green plants and probably originated from ancestors of green algae of the Chlamydomonadales order. HvCaM1 was mainly expressed in roots and was significantly up-regulated in response to long-term salt stress. Localization analyses revealed that HvCaM1 is an intracellular signaling protein that localizes to the root stele and vascular systems of barley. After treatment with 200 mm NaCl for 4 weeks, HvCaM1 knockdown (RNA interference) lines showed significantly larger biomass but lower Na+ concentration, xylem Na+ loading, and Na+ transportation rates in shoots compared with overexpression lines and wild-type plants. Thus, we propose that HvCaM1 is involved in regulating Na+ transport, probably via certain class I high-affinity potassium transporter (HvHKT1;5 and HvHKT1;1)-mediated Na+ translocation in roots. Moreover, we demonstrated that HvCaM1 interacted with a CaM-binding transcription activator (HvCAMTA4), which may be a critical factor in the regulation of HKT1s in barley. We conclude that HvCaM1 negatively regulates salt tolerance, probably via interaction with HvCAMTA4 to modulate the down-regulation of HvHKT1;5 and/or the up-regulation of HvHKT1;1 to reduce shoot Na+ accumulation under salt stress in barley.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。