Limited oxygen diffusion accelerates fatigue development in mouse skeletal muscle

氧气扩散受限会加速小鼠骨骼肌疲劳的形成

阅读:7
作者:Shi-Jin Zhang, Joseph D Bruton, Abram Katz, Håkan Westerblad

Abstract

Isolated whole skeletal muscles fatigue more rapidly than isolated single muscle fibres. We have now employed this difference to study mechanisms of skeletal muscle fatigue. Isolated whole soleus and extensor digitorum longus (EDL) muscles were fatigued by repeated tetanic stimulation while measuring force production. Neither application of 10 mm lactic acid nor increasing the [K(+)] of the bath solution from 5 to 10 mm had any significant effect on the rate of force decline during fatigue induced by repeated brief tetani. Soleus muscles fatigued slightly faster during continuous tetanic stimulation in 10 mm[K(+)]. Inhibition of mitochondrial respiration with cyanide resulted in a faster fatigue development in both soleus and EDL muscles. Single soleus muscle fibres were fatigued by repeated tetani while measuring force and myoplasmic free [Ca(2+)] ([Ca(2+)](i)). Under control conditions, the single fibres were substantially more fatigue resistant than the whole soleus muscles; tetanic force at the end of a series of 100 tetani was reduced by about 10% and 50%, respectively. However, in the presence of cyanide, fatigue developed at a similar rate in whole muscles and single fibres, and tetanic force at the end of fatiguing stimulation was reduced by approximately 80%. The force decrease in the presence of cyanide was associated with a approximately 50% decrease in tetanic [Ca(2+)](i), compared with an increase of approximately 20% without cyanide. In conclusion, lactic acid or [K(+)] has little impact on fatigue induced by repeated tetani, whereas hypoxia speeds up fatigue development and this is mainly due to an impaired Ca(2+) release from the sarcoplasmic reticulum.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。