Abietane-Type Diterpenoids Inhibit Protein Tyrosine Phosphatases by Stabilizing an Inactive Enzyme Conformation

松香烷型二萜类化合物通过稳定非活性酶构象来抑制蛋白酪氨酸磷酸酶

阅读:6
作者:Michael K Hjortness, Laura Riccardi, Akarawin Hongdusit, Sophia Ruppe, Mengxia Zhao, Edward Y Kim, Peter H Zwart, Banumathi Sankaran, Haribabu Arthanari, Marcelo C Sousa, Marco De Vivo, Jerome M Fox

Abstract

Protein tyrosine phosphatases (PTPs) contribute to a striking variety of human diseases, yet they remain vexingly difficult to inhibit with uncharged, cell-permeable molecules; no inhibitors of PTPs have been approved for clinical use. This study uses a broad set of biophysical analyses to evaluate the use of abietane-type diterpenoids, a biologically active class of phytometabolites with largely nonpolar structures, for the development of pharmaceutically relevant PTP inhibitors. Results of nuclear magnetic resonance analyses, mutational studies, and molecular dynamics simulations indicate that abietic acid can inhibit protein tyrosine phosphatase 1B, a negative regulator of insulin signaling and an elusive drug target, by binding to its active site in a non-substrate-like manner that stabilizes the catalytically essential WPD loop in an inactive conformation; detailed kinetic studies, in turn, show that minor changes in the structures of abietane-type diterpenoids (e.g., the addition of hydrogens) can improve potency (i.e., lower IC50) by 7-fold. These findings elucidate a previously uncharacterized mechanism of diterpenoid-mediated inhibition and suggest, more broadly, that abietane-type diterpenoids are a promising source of structurally diverse-and, intriguingly, microbially synthesizable-molecules on which to base the design of new PTP-inhibiting therapeutics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。